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ABSTRACT

New and recently developed concepts and ideas useful

in obtaining efficient computer algorithms for solving the

equations of motion of multi-body mechanical systems with

flexible links are presented and discussed. These ideas

include the use of Euler parameters, Lagrange's form of

d'Alembert's principle, generalized speeds, quasi-coordinates,

relative coordinates, structural analysis techniques and body

connection arrays. The mechanical systems considered are

linked bodies forming a tree structure, but with no "closed

loops" permitted. An explicit formulation of the equations

of motion is presented.
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INTRODUCTION

This report discusses the development of new methods for including the

effects of flexibility and link and joint compliance in the governing dynami-

cal equations of multi-body systems. Specifically, new, computationally-

oriented techniques with potential for efficient, automated, and comprehensive

analyses of multi-bodysystem dynamics are presented and discussed.

The development of equations of motion of multi-body mechanical systems

has received considerable attention of analysts in recent years. There are

q several reasons for this: Foremost, is the fact that many mechanical systems

and devices can be effectively modelled by systems of linked bodies. But,

another reason is the fact that it has just recently been possible with the aid

of high-speed digital computers, to obtain efficient numerical solutions of the

governing dynamical equations. Hence, the emphasis of researchers and analysts

working with multi-body systems has been the formulation of equations of motion

which can easily be developed into numerical algorithms for a computer code.

Most of the recent efforts in obtaining these dynamic formulations and their

corresponding computational algorithms has been with systems of linked rigid

bodies. Recently, however, a few researchers have attempted to include the

effects of flexibility, compliance, and relative translation of the links by

using a variety of approaches such as quasi-static methods, finite-element meth-

ods, modal analysis, and the strategic positioning of the flexible bodies, (for

example, to the extremities of the system). Many of these efforts and the

corresponding methodologies have been stimulated and motivated by specific

application areas such as mechanism vibration and flexible satellite oscillations.

In this report, these ideas are used and extended in the outline of new proce-

dures for efficiently modelling the dynamics of multi-body systems with flexible

links and joints.
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If a mechanical system consists of connected bodies such that no closed

loops or circuits are formed, the system is called a "general-chain", "open-

.. chain", or "open-tree" system. Figure 1. depicts such a system. References

[1-81]*provide summary of approaches taken to obtain efficient, computer-

oriented formulation of equations of motion for such systems and related systems.

If the mechanical system model of Figure L is generalized to include transla-

tion and compliance at the joints, it might appear as shown in Figure 2.

References 2-143 provide a summary of approaches taken to include the effects

of flexibility, translation, and link and joint compliance of these systems.

In one of these approaches it is shown (28, 29, 37, 38, 39, 511 that it is

possible to obtain expressions for the governing equations in a form where the

coefficients are directly related through computer algorithms. This approach

uses Lagrange's form of d'Alembert's principle, as exposited by Kane and others

[30, 52, 144, 145, 146] together with body connection arrays (37, 38, 391 and

relative orientation coordinates [31, 32, 37, 50] to obtain the governing equa-

tions. Lagrange's form of d'Alembert's principle - a virtual work type approach

combines the computational advantages of both Newton's laws and Lagrange's equa-

tions. That is, it has the advantage of automatic elimination of non-working

internal constraint forces but without the introduction of tedious differentia-

tion or other similar calculations.

Recently, it has been suggested by Huston, et. al. [32, 33, 37] that further

efficiencies could be obtained through the use of Euler parameters as described

by Whittaker (146] and Kane and Likins (147], together with the quasi-coordinates

suggested by Kane and Wang [148]. Specifically, it is claimed (32, 33, 37] that

using Euler parameters together with relative angular velocity components as

generalized coordinate derivatives allows for the avoidance of geometrical singu-

* nmbers.in brackets refer to References at -the end of the report.
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larities encountered with using Euler angles or dextral orientation angles to

define the relative orientation of the bodies.

The use of Lagrange's form of d'Alembert's principle, body connection arrays,

relative orientation coordinates, quasi-coordinates, and Euler parameters also

promises to provide an effective and efficient approach in the modelling, gover-

ning equation formulation, and analysis of multi-body systems with flexible links

and joints. The exposition of these ideas is a primary objective of this report.

The balance of the report is divided into five parts with the first two

parts containing the geometrical and kinematical development. The governing

dynamical equations are developed in the third part. This is followed by an

analysis of the flexibility and compliance effects in the fourth part. The

final part contains a discussion of the developed procedure together with con-

-. cluding remarks.
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PRELIMINARY GEOMETRICAL CONSIDERATIONS

Body Connection Array

Consider a mechanical system such as depicted in Figure 1. To

develop an accounting routine for the system's geometry arbitrarily select

one of the bodies as a reference body and call it B1 . Next, number or

label the other bodies of the system in ascending progression away from

B1 as shown in Figure 1. Now, although this numbering procedure does not

lead to a unique labeling of the bodies, it can nevertheless be used to

describe the chain structure or topology through the "body connection

array" as follows: Let L(k), kil,...,N be an array of the adjoining

lower numbered body of body Bk. For example, for the system shown in

Figure 1., L(k) is:

L(k) - (0,1,1,3,1,5,6,7,6) (i)

where

(k) - (l,2,3,4,5,6,7,8,9) (2)

L and where 0 refers to an inertial reference frame R. It is not difficult

to see tha4 given L(k), one could readily describe the topology of the system.

That is, Figure 1. could be drawn by simply knowing L(k). It is shown in

the sequel that L(k) is useful in the development of expressions of

kinematical quantities needed for analysis of the system's dynamics.

6
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1Transformation Matrices

Next, consider a typical pair of adjoining bodies such as B and Bk

as shown in Figure 3. The general orientation of Bk relative to B

may be defined in terms of the relative orientation of the dextral

orthogonal unit vector sets n i and ni (i1-,2,3) fixed in B and Bk

as shown in Figure 2. Specifically n 1i and nki are related to each

other as

SJIs k (3)

where SJK is a 3 x 3 orthogonal transformation matrix defined as [47]:

SJK - ji ! i (4)

(Regarding notation, the J and K in SJK and the first subscripts on the

unit vectors refer to bodies Bj and Bk, and repeated indices, such as the

m, in Equation (3) signify a sum over the range (eg. 1,...,3) of that

index. Thus, with a computer SK im would be the array SJK(IM).)

From Equation (3), it is easily seen that with three bodies Bi, Bk,

BI the transformation matrix obeys the following chain and identity rules:

SJL SJK SKL (5)
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and

SJJ =I = SJK SO SJK SJ- (6)

where I is the identity matrix.

These expressions allow for the transformation of components of

vectors referred to one body of the system into components referred

to any other body of the system and, in particular, to the inertial

reference frame, R. For example, if a typical vector, V, is expressed

as

v i(k) = v(0)-0 (7)

then

Vi(0) . SOKij V (k) (8)

where 0 refers to the inertial frame, R.

Since these transformation matrices play a central role throughout

the analysis, it is helpful to also have an algorithm for their derivative,

especially the derivative of SOK. Using Equation (3), and noting that noi

are fixed in R, the following is obtained:

d(SOij)/dt n 01 R d nkj /dt (9)

9



where the R in Rd nkj/dt indicates that the derivative is computed in

R. However, since the nkj are fixed in Bk, their derivatives may be

written as k x nk where .k is the angular velocity of Bk in R,

Equation (9) may then be written as:

d(SOKi )/dt M -e,=nlk nor nkj (10)

or as

d(SOK)/dt - WOK SOK (11)

where WOK is a matrix defined as

WOKim - -e (12)

and where are the components of 4k referred to n and e n is the01 Z -on n
standard permutation symbol [150]. (WOK is simply the matrix whose dual

vector (150] is uk.) Equation (11) thus shows that the transformation matrix

derivative may be computed by a simple matrix multiplication.

Euler Parameters

Finally, consider describing the relative orientation of Bj and Bk

by using the so-called Euler parameters as discussed by Whittaker [ 147] and Kane

and Likins [1483 It is well known [1471 that Bk may be brought into any

10



general orientation relative to Bj by means of a single rotation about an

appropriate axis. If X k is a unit vector along this axis and if 1 is the

rotation angle, the four Euler parameters describing the orientation of Bk

relative to B may be defined as:

E t = X l. sin(ek/2)

E k2 = 'k2 sin(ek/2)

(13)

E 03 X U sin(B k12)

C k4 = Cos (6k/2)

where the Xki (i-1,2,3) are the components ofXk referred to ji the unit

vectors fixed in B . Clearly, the eki (i-1,2,3,4) are not independent since:

2 2 2 2
kl k2 k3 k4

These parameters may be related to angular velocity components by

using the transformation matrices as follows: It is shown in [147, 148]

that SJK may be expressed in terms of these parameters as:

11
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2 C 2 -C 2 F ( - 2 ( e+eC)k1 22 k3 k4 2 (£klk2Uk4) k1ik k2 k4

2C2 C2 2. 2 2 (Ek2 C 3Ckl k4) (15)SJK = ¢ k2-1U MZ -kI Hk2-Fi3-"ck4 2k- lk

72 C2 2 .2

2 (£kllk3"k2k4) 2(ck2Ek"klIk4) "k-k2+Ek3" k4

Now, by solving Equations (11) and (12) for the angular velocity components,

one obtains:

'I ' SOK21 SOK31 + SOK 22 SOK 32 
+ SOK23 SOK3 3

'k2 = SOK31 SOK11 + SOK 32 "S6 I2 + SOK 33 "$6Kl3  (16)

'k3 - SO 11 S6K21 + S0K1 2 "SOK2 2 + SO 13 "SOK2 3

where the dot designates time differentiation. By using Equation (15),

these expressions may be used to express the nri components of the angular

velocity of Bk relative to B in terms of the Euler parameters as:

Wk, a 2(c k4 Ekl - C £ k2 + C k2 kU C £kl £k4)

uik - (£ 1+Ck Ek lCU Ck2 £k4) (17)

12
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(Regarding notation, in the sequel "hats" refer to relative angular

velocity vectors or their components. That is the Wk represent the

angular velocity of Bk in R and W-k represent the angular velocity of

B relative to Bit its adjoining lower numbered body.) Equation (17)

may now be solved for the Iki (i-l,...,4) in terms of the W kileading

to the expressions:

£k1 I (Ck4 cL'*kl + -k3 AOk2 - '-2

;12 -S 10W1 '4wk k ~3

(18)

A A

~k4 =!-- kl 'kl - k2 'k - 'k3 wO

This solution is quickly obtained by observing that if Equation (14) is

differentiated and placed with Equation (17), the resulting set of equations

could be written in the matrix form:

Wkl Ck4 k3 Ck2 -Ckl kl

i. £
4k2 Ck3 Ck4 -Ckl -- k2 k2

^ -2 , (19)

.k3 -k2 Ckl Ek4 -k3 

13



where w..4 is equal to the derivative of Equation (14) and has the value

zero. The square matrix in Equation (19) is seen to be orthogonal

(La. the inverse is the transpose) and hence, Equations (18) follow

immediately from (19) upon letting w k4 be zero.

14



KINEMATICS

Coordinates

A multibody system of N bodies, with translation permitted between

the bodies will, in general, have 6H degrees of freedom. Let these be

described by 6N generalized coordinates x2 (Z-I,...,6N) and let the first

3N of these be divided into N triplets describing the relative

orientation of the successive bodies of the system. Let the

remaining 3N xZ also be divided into N triplets representing the relative

displacement of the successive bodies of the system. As before, let

be a typical body of the system and let B be its adjacent lower numbered

body, as in Figure 3. The angular velocity of Bk relative to B (that is,

the relative rate of change of orientation) may then be written as:

A 

(20

where nl (jil-I...,N i1.2,3) are mutually perpendicular dextral unit

vectors fixed in B . Next, let these bodies be displaced relative to

each other with the displacement measured by the vector - as shown in

Figure 4., where 0 and 0k are arbitrarily selected reference points of

B and Bk- Qk, which is fixed in B , is the connection point or "origin"

of Bk. Then _k may be written in the form:
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-k 1 !j I S2 !j 2 +k3 !j 3 (21)

Following Kane and Wang [1493 introduce 6N parameters y. (1-1,...,6N)

defined as:

. - 2. I- I,..., 6N (22)

where the first 3X of these are called "generalized speeds", are

73k-2 k

A (23)
73k-1 11141

A

73k %3

and the remaining 3N are:

Y3(14+kL)-2 " dk

Y3(N+k)- " S (24)

Y31(N+k)
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In generaL, Equations (23) are non-integrable. That is, they cannot

be integrated to obtain generalized orientation coordinates x3k2

X3k-l , '3k . Thus, explicit parameters x3k-2' 3k-l' and '3k do not

in general exist-hence, the name "quasi-coordinates". However, since

parameters are needed to relate the relative orientation of the bodies

to the respective relative angular velocities, let the Euler parameters

introduced in the foregoing section be used for this purpose. Hence, if the

orientation of a typical body B relative to B is described by the fourB:1

parameters &.k (i-,...,4),the geometry and kinematics of the entire system

may be expressed in terms of the 4N Euler parameters £ki (k-l,...,N; i'l,...,4),

the 3N relative angular velocity components ( (kml,...,N; 1-1,2,3), and the

3N displacement components C. (kl,...,N; 1-1,2,3).

Angular Velocity

The angular velocity of a typical body Bk in the inertial frame R is

readily obtained by the addition formula as [145]

where the relative angular velocities on the right side of this expression

are each with respect to the respective adjacent lover numbered bodies and

where the sum :s taken over the bodies of the chain from B1 outward through

the branch containing Bk. The L(k) array introduced in the foregoing section

can be useful in computing this sum: Consider for example, the system shown

in Figure 1. The angular velocity of B9 is:

j1



* -- ... . .. - ..-.. . .. . . . .._

..

T9 +A C+Aj (26)T19 T'5 + h T9

The subscript indices (e. 9,6,5,1) may be obtained from L(k) as

follows: Consider L(k) as a function mapping the (k) array (See Equation (2))

into the L(k) array. Then, using the notation that L (k) - (k),

L (k) - L(L 0 (k), L 2 (k) - L(L (k), ... , Lj(k) -L(LJ-I(k)), it is seen

(see Equation (1)) that:
I

L0(9) - 9, L1(9) - 6, L 2(9) 5, L3(9) -1 (27)

Therefore, w9 may be written as:

, q-LP(9) 
(28)

Hence, in general, the angular velocity of Bk may be written as:

r A

wk 0 ~q, q-L(k) (29)

where r is the index such that Lr(k) - 1 and it is obtained by comparing
LP(k) to 1. The index r represents the number of bodies from B1 to Bk in

that branch of the chain system %. For example, for the system of Figure 1.,

if k-9, r-3. Equation (29) is thus an algorithm for determining U), once

and L(k) are knovn.

1
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By examining Equations (20, (23), and (25) it is seen that wk may be

written in the form

!-k ' 'ko Yh -O (30)

where there is a sum over the repeated indices and where k9m (k'l1,...,IN;

X-l,...,3N; m-1,2,3) form a block array of coefficients needed to express

oh in terms of n . In view of Equations (3), (16), (20), and (23),

it is seen that the elements of the Wktm array may be obtained from the SOK

transformation matrices. Moreover, it can be shown that the matching between

the elements of the Wkym and SOK arrays is solely dependent upon the body

connection array L(k).

To see this, consider for example the angular velocity of B4 of the

system of Figure 1: From Equation (25), T4 is

A A A

oh -W 4W 4W(31)-4 - l -T3 -4

where from Equations (3), (20), and (23) T1 9 and W4 may be written as:

-01 + Y2 !02 73 !03 YJ mj !Om

-3 ' Y7 hl + Y8 !12 79 -13 Y6+j SOlmh 2Om

S03 (34)

,t - Y10 !31 + Yll n32 + Y12 '33 - Y9+j S033 nor (34)

20



Hence, the w41m are:

6 I - 1,2,3

0 1 - 4,5,6

W SOl. 9 I = 7,8,9 m- 1,2,3 (35)

S03 L9 X 10,11,12

0 X>12

where 6 are the identity matrix components [150].

Next, consider that the results such as Equation (35) may be obtained for

the entire system of Figure 1. or Figure 2. from a table such as Table 1.,

where the "m" entries of the m array are the column of the transformation

matrices. Finally, note that the non-zero entries in a typical row,

say the kth row of Table 1. are obtained as follows: Let P - L(k).

Then SOP is placed in the kth coltmn of triplets of x. Next, let Q-L(P).

The SOQ is placed in the pth column to triplets of x£,, etc. That is, SOM

is placed in colum Li W(k) where M - Lj (k), J-l,...,r+l with r determined

from Lr (k) - 1.

Finally, it is interesting to note that the elements of the Wkim array

(and hence, the transformation matriL, columns of Table 1.) are components

of the "partial angular velocity vectors" as originally defined by Kane [1441.

21
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I

Angular Acceleration

The angular acceleration of Bk in R may be obtained by differentiating

Equation (30). Noting that the nor are constant, this leads to:

ctk - ( yX + wki ;j) n O (36)

A table containing the can be constructed directly form the corresponding

table for the wm" For example, for the system of Figure 1., such a

table is shown in Table 2.

Mass Center Velocities

The velocity and acceleration of the mass center Gk of a typical body

Bk (kml,...,N) may be obtained as follows: Let Ek locate Gk relative Ok

as shown in Figure 4. Since Ok is located relative to Qk by -k and if Qk is

located relative to 0 by the vector qk (See Figure 4.), then by continuing

this procedure, Gk may ultimately be located relative to a fixed point 0 in

R, the inertial reference frame. For example, for Body B8 of Figure 2., the

position vector P of G relative to 0 is:

8- + q +E +q + q 7 + q8 + E8 +r. (37)

-l -.s -5 -6 + 6 +7 &7 - 8 -

In general, for Body Bk, the position vector P of Bk relative to 0 is:

23
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X(38)

Ek- 'SOY-ih rkh 0 SOSih (qsh + )]n (38)

where s - Lq(k), S - Lq+'(k), and ua is the index such that Lu(k) -1,

and where is 0. By differentiating, the velocity of in R is obtained

as:

u

-k " {s6K h rk + 0 [S6Sih (%sh + Csh)

q=O

+ SOS ih ish o (39)

By using Equations (11), (12), and (30), "k may be written in the form:

!k ' k.YZ'o (40)

where v (k-l,...,N; 1-1,...,6N; m-1,2,3) form a block array of coefficients

as"

needed to express v1k in terms of a am* In view of Equation (39), the

non-zero vkjtm are:

u

vkg iWKh rk + I "Sh(%sh +'qsh)

~qO

whrevkm  k-,..,;1-1,...,3N; z-1,2,3) (41)blc rayo offcec

25
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where W h is defined as:

aWOK
WKmIh1 - 4 SOK - ep i SOKph (42)

a 2 y ph iP

and

V (3N+2.)r"n M (k-l,...,N; t.-l,...,3N; m-1,2,3) (43)

The elements of the v1cm array are components of the "partial velocity vectors"
as originally defined by Kane [1441.

Mass Center Accelerations

Similarly, by differentiation of Equations (40), the acceleration

of G in R is

a - ( yZ7Z+ vk, ;')n OM(44)

where the non-zero are, by Equations (41) to (43),

u-1

;kr W ~mht rkh + I [ h sh + qh) + WShEsh] (k-l,...,N;

q-O

'--,...,3N, n-i, 2, 3) (45)

where WiK 43

Wkml -' mpi (.i SOKph + 'akl S0Kph) (46)

26
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and

v, (3Ni+L), wk*L1..3 -,,)(7

* b. -27



EQUATIONS OF MOTION

Consider again a general chain system such as shown in Figure 2., and

imagine the system to be subjected to an externally applied force field.

Let the force field on a typical body Bk, be replaced by an equivalent

force field consisting of a single force F , passing through Gk together

with a couple with torque Mk. Then Lagrange's form of d'Alembert's principle

leads to governing dynamical equations of motion of the form [38]:

F 2 + F£* 0 t a it...,6N (48)

F£ (tin,... 6N) is called the generalized active 'orce and is given

by:

*F 1  v~ Fkm +e 1 (49)

where there is a sum from I to N on k and from 1 to 3 on m, and where Fmk

and H are the components of f k and Nk with respect to no OM *

(9,l,...,6N) is called the generalized inertia force and is given by:

* tiVkm Fk* + Wkm(50)

28
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where the indices follow the same rules as in Equation (48), and where

F * and are nor components of inertia forces, * and inertia torques,

M4 , given by (145].

Zk -k a.k (no sum) (51)

and

! -- • %-. _ . ) (,no sum) (52)

where mk is the mass of Bk and Ik is the inertia dyadic of Bk

relative to G (k-l,...,N). (,*, with line of action passing through

k together with * are equivalent to the inertia forces on Bk (145].

Through use of the shifter transformation matrices, I may be written

in the form:

" c nom !on (53)

By substituting Equations (36) and (44) into Equations (51) and (52)

and ultimately into Equation (47), the equations of motion may be written

in the form:

29



a yp - fi (it-1,...,6N) (54)

where there is a sum from 1 to 6N on p and where a and are

given by:

at Z9 km vk~ + Tk= 'Okp Wkn(5

and

f " + k Vkqm Yq + Ikn WkIm kqn Yq

+ enmh kmr Wkqn w Wksr wkn Yq Ys) (56)

where there is a sum from 1 to N on k, from 1 to 6N on q and s, and from

1 to 3 on the other repeated indices.

Recall that the first 3N y are relative angular velocity components.
yp

These may be related to the Euler parameters by N sets of first order

equations of the form of Equations (18).

Equations (54), (20), and the 4N equations of the form of Equations

(18) form a set of 13N simultaneous first-order differential equations for

the 6N yp, the 3N k, and the 4N Euler parameters 'ki (h-1,...,N;

i-l,...,4). Since the coefficients a.p and f in Equations (54) are

algebraic functions of the physical parameters and the four block arrays

wkzm' .m, vkt and m, computer algorithms can be written for the

numerical development of these governing equations. Moreover, once these

30
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arrays are developed, the system of equations consisting of Equations (54),

(20), and 4N equations of the form of Equations (18), may also be solved

numerically by using one of the standard numerical integration routines

and a linear equation solver.

The development of these computer algorithms and the numerical development

of Equations (54) might proceed as follows: First, let the body connection

array L(k) (See Equation (1)) together with "he geometrical and physical

parameters , k' " and mk (See Equations (38), (51), and (52).) and

the applied forces and moments Fk and , (See Equation (48).) be read into

the computer. (Let rk, Fk I& and, if desired, Fk and N be expressed in

terms of nki.) Next, from assumed initial values of rke form the

transformation matrix arrays SOK using Equations (15) and (5). Use these

arrays to express lks &ks Ik and possibly Fk and in terms of okn Next

using L(k) and SOK write an algorithm, with Tables 1. and 2. as a guide, to

form w and k9M * For example, to obtain the non-zero £f observe that

if L(k) - p, then wk -- SOPMI (m-1,2,3; Z-3p+I, 3p+2, 3p+3). Then, if

L(p) - q, L2(k) - q and k - SOm (m-1,2,3; Z-3q+1, 3q+2, 3q+3).

This assignment procedure is continued until unity is reached or r times

where r is given by Lr (k) - 1 (See the remark following Equation (29)..).

vkjM and Vktm may then be obtained using Equations (40) to (47). Finally,

numerical values of the coefficients a±p and f of the governing differential

equations (54) may then be obtained from Equations (55) and (56). These

equations may then be integrated numerically to obtain incremental values to the

initial values of the parameters yp, £ki, and xq (p-l,...,3N+3; k-l,..oN; i-1,2,3,

and q-1,2,3), at the end of a time interval, say tI . New values of the
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transformation matrix arrays SOK may then be obtained and the entire process

repeated until a history of the configuration and motion of the systea is

determined.

The application of these expressions and ideas in an analysis of the

flexibility and compliance effects is developed in the following part of the

report.

I
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EFFECTS OF COMPLIANCE AND FLEXIBILITY

Compliance

Let the term "compliance" refer to the yielding or deformation of the system

due to the externally applied forces and due to the inertia forces. If the

assumption is made that the compliance of a link or joint is "small" compared with

the general dimensions of the system, then the effects of rhe compliance can be

determined directly from the integration of Equations (54).

To see this, consider a typical integration step as described at the end of

the foregoing section. If the Vkgm, Vk~m) kim' Wk~m £ki' Y , and are known,

all the kinematics is known. That is, by using Equations (30) and (36) the angular

velocity and angular acceleration of each body is determined. Similarly, by using

Equations (40) and (44), the velocities and accelerations of the mass centers of

each of the bodies is determined. Then, by using Equations (51) and (52) the

equivalent inertia force system on each body is determined. Hence, since the

externally applied force field on each body is also known, the entire force system

on each body is determined. Therefore, by taking successive free body diagrams of

the bodies of the system, starting with the Nth body and working backward through

the chain, the force system transmitted across each connection joint may be deter-

mined. Finally, by knowing the complete force system acting on each body, includ-

ing the forces transmitted across the connection joints, the physical force-defor-

mation relations may be used to determine the compliance. Then by addition and

superposition the compliance of the entire system is determined.

To illustrate this procedure in more detail, assume, for example, that the

bodies of the system are long slender members which can be modelled as beams with

AV uniform cross section. Hence, the system of Figures 1. and 2. might appear as
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shown in Figure 5., and a typical member of this system might be depicted as in

Figure 6., where a rectangular shape is assumed and where an axes system is intro-

duced. As before 0 is the connection point of the adjacent lower numbered body

Bi and Qk is the connection point with the adjacent higher numbered body Bk.

Let the forces exerted on B1 by Bi and Bk at the connection joints 01 and
Qk be represented by single forces f / and f k/j passing through 0 and Qk

together with couples with torques */ and ^ Similarly, let the externally

applied force system on B1 together with the inertia force system of B be repre-

sented by equivalent force systems at the ends 01 and Qk of Bj. Hence, let the

resultant force system exerted on B at Qk be represented by the single force k/1

passing through Qk' together with a couple with torque ink/j and let fk/j and ik/j

* be expressed in the forms:

fk/j " fjl njl j fj2 2j2 + fj3 2j3 (57)

and

ik/j = mjl nIl + 'j2 2j2 + 'j3 2j3

(Note, that from equilibrium considerations, the force system exerted on B at 01

is equivalent to a single force --fk/j passing through 01 together with a couple

with torque - mk/j.)

Let the displacement of Qk relative to 0 due to the beam compliance, or

deformation, be represented by u JO Let u be written in the form:

2j 1 Ujl njl + uJ2 nj2 + uj3 nj3 (59)

Similarly, let the rotation of the beam cross section at Qk relative to the cross

section at 0j, due to the beam compliance, be represented by %. Let 0 be
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written in the form:

tj " jl !jl + 6.J2 !J2 + OJ3 !-J3 (60)

By following the precedures of matrix structural analysis [15] ujj and 0Ji

may be expressed in terms of fl and mjj (i - 1, 2, 3) as:

uji" (2I/AJ E ) f !i (61)

uj 2 - (Z'/3EJ 2 ) fjz + (L,/2E Jj2)  3 (62)

uj3 - (£/3Ej JJ 3 ).fJ3 - (12/2Ej aj 3 ) mj 2  (63)

*1 " (z' /JiG) mj 1 (64)

2 (L/2E JJ2) fJ2 + (Zj/E JJ 2 ) mj3 (65)

-J3 (.i /2EJJJ 3 ) fJ 3 - (J3 j/EjJJ3 ) mj2 (66)

* where 1i is the axial length of Bit Aj is the cross-sectional area, Ji, (i - 1,2, 3)

are the centroidal second moments of area of the cross section relative to the Xji

axes, E is the elastic modulus, and Cj is the shear modulus.

u and 0 thus represent the compliance as yielding of member B due to the

holding and system motion. In an automated analysis as outlined in the foregoing

section, u and 0 would be calculated and then used to adjust the geometrical

parameters at each integration step. Specifically, 9k (See Figure 4.) and SOK are

adjusted as:

3k - qk + uj (67)

and
SOK PSOK CJ (68)

where CK is

D jl (69)

LJ2 iJ
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(The development of Equation (69) follows from the successive multiplications of

matrices of the form of Equation (15) for 8 being jkv OJ2" and 0J3 (small angles)

about the Xji, Xj2, and XJ3 axes respectively.) The integration would then pro-

ceed with the adjusted values of qk and SOK.

Vibration and Impact Response

The above compliance analysis is a quasi static analysis and as such it does

not directly account for oscillatory or vibration phenomena due to the flexibility

of the system and the externally applied (for example, impact) and inertia forces.

If, as before, it is assumed that the vibrations have relatively small amplitude,

then a modelling and description of the vibration phenomena may be obtained through

torsion and translation springs introduced at the connection points, or joints, of

the system.

To illustrate this, consider again a system consisting of long slender members

which can be modelled as beams as in Figure 5. Consider two typical adjoining mem-

bers of such a system as shown in Figure 7. The contribution to the systems

oscillation due to the flexibility of B can be modelled by 1) three torsion springs

connecting the surfaces of Qk and Ok with spring constants G J jl/Z and E JJ3/ j

and governing the relative rotation of B and Bk about axes parallel to nJl' nJ2

and n J3 respectively; and by 2) three translation springs connecting Qk and 0k with
spring constants A E /Z 3H J3/02 and 3E J. and governing the relative

i J J, 3E J3  j j 3 j2

translation of B and Bk along axes parallel to n jl' nj2" nj3 (these constants are

determined from elementary structural analysis as in Equations (61) to (66).)

Discussion

Both of the above analyses involve the effects of forces and moments trans-

mitted across connection joints. The dynamics analysis of the preceding part is

38



r. .

0Go

9-

39d



particularly well suited for accomodating the introduction of these forces and

moments and for obtaining their contributions to the generalized forces. That

is, although the compliance procedure above suggests the use of successive free

body diagrams to obtain the force and moment components, and although this pro-

cedure could be automated, these components as well as the spring and moment com-

ponents of the above oscillation analysis, can be readily obtained and directly

incorporated into the governing equations by using the partial velocity and partial

angular velocity vectors of the preceding dynamics analysis.

To see this, consider again two typical adjoining bodies such as B and Bk

of Figures 4. and 7. As in Figure 4., let k measure the displacement of 0k rela-

tive to Qk" Then by differentiation of k [145] the velocity of Ok may be ex-

pressed as: VOk - VQk + W XC + n (70)
jXZk ki j n

As before, let the 'orientation and rotation of Bk relative to B be defined in

terms of Euler parameters and relative angular velocity components. Then, from

Equation (25) the angular velocity of Bk may be expressed as:

- - + (71)

Let the force system which Bk exerts on B be equivalent to a single force

fk/J passing through Qk together with a couple with torque mk/j, as in Equations

(57) and (58). Then by the law of action-reaction, the force system which Bj

exerts on Bk is equivalent to a single force - Ik/j passing through Ok together

with a couple with torque - Mk/J.

Let yjt (1-l, ..., 6N) be the generalized coordinate derivatives as defined

by Equations (23) and (24). Let the contribution to the generalized active force

F I by these forces transmitted across the connecting joint be Ft. Then iA is given

by the expression [145]: 40
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- )•Qk/y (f/j) + a /a 72)

]z Nn/'yd) • (-11,/J) + (aw-k/ay ) (.-Sk/j)

Consider the following cases:

Case 1: y is not equal to either ki or In this case the

partial velocities and partial angular velocities of Qks

0k, Bi. and Bk may be expressed by using Equations (70)

and (71) as:
9. V~/a - SV(k t(73)

and
3 W a y - IW / YX(74)

A

Then, by Equation (72), Fz becomes:
A (75)
FX . 0

Case 2: yX is equal to one of the ki (i-1, 2, 3). In this case,

the partial velocities and partial angular velocities of

Qk' Ok' Bi, and Bk become:

avik/ay~ z . a k/ k± . o (76)

aV-k/ayX " a-V/kO ki w L- i (77)

D /y - a/' j ki -0(78)

and
au/ayt - NOEki - o (79)

Hence, by Equation (72) and (57), FL becomes:

F x 2j i (-k / J - -i (80)
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Case 3: yX is equal to one of the 'ki (i-, 2, 3). In this case, the

partial velocities and partial angular velocities of Qk' Ok'

B , and Bk become:

afkp y, - afk/Z 0(8

£k - m (82)

av4Jjhyt - 0j/ (83)

"n "0ji (84)

Hence, by Equation (72) and (5), F becomes:

-L !j '-/J )  -mj i (85)

The above three cases include the contribution to the generalized active

forces for each of the y, (Z - 1,..., 6N). Moreover, each of the non-zero con-

tributions (from Equations (80) and (85) occurs individually; that is, each con-

tribution occurs separately in one of the governing equations. Hence, if in a

particular configuration or motion of the system, y, is specified (for example,

y, is zero) then the 2 th governing equation becomes an uncoupled linear espres-

sion for the unknown restraining force or moment, thus determining the compliance.

Conversely, if yZ is an unknown variable (representing a degree of freedom) the

contribution to FI due to the flexibility as modelled by the translation and

torsion springs is determined directly by Equations (61) to (66), (80), and (85).
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CONCLUDING REHARKS

The results of numerically solving the governing differential equations (54)

where the coefficients are given by Equations (55) and (56) are reported and

discussed in References [1, 32, 34, 35, 36, 77, 152-155] for a number of physical

systems and configurations (e.g. human-body models, head-neck models, and flexible

cables).

The application of Equations (54) with these systems, however, is based on
9

the use of relative orientation angles between the respective bodies of the system

as the generalized coordinates (x,) as opposed to the use of Euler parameters,

quasi-coordinates, and generalized speeds as outlined herein. A problem which

arises in the numerical solution of Equations (54) where orientation angles are

used is that there always exists values of the angles and hence, configurations of

the system, for which the determinant of ak is zero. A numerical solution will,

of course, fail to converge at these singular configurations of the system, and

convergence is very slow for configurations in the vicinity of a singularity.

This problem is avoided by using Euler parameters to relate the orientation geom-

etry to the angular velocity.

The advantages of using Lagrange's form of d'Alembert's principle to obtain

the governing equations of motion for multi-body mechanical systems has been

exposited in detail in References [28-30]. Basically, this principle has the

advantages of Lagrange's equations or of virtual work in that non-working internal

constraint forces, between the bodies of the system, are automatically eliminated

from the analysis, and may therefore be ignored in the formulation of the governing

equations. The principle, however, has the additional advantage of avoiding the
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differentiation of scalar energy functions. Indeed, the differentiation required

to obtain velocities and accelerations are performed by vector cross products and

multiplication algorithms - procedures which are ideally suited for numerical

computation. As with Lagrange's equations, Lagrange's form of d'Alembert's prin-

ciple requires the use f generalized coordinates to define the system geometry.

The use of Euler parameters to avoid problems with singularities, as discussed

above, leads naturally to the use of generalized speeds - that is, relative angular

velocity components as the generalized coordinate derivatives. This, in turn,

leads to additional computational advantages as observed by Kane and Wang [149]

and Likins [122]. Specifically, by using generalized speeds (relative angular

velocity components) as the principle parameters of the analysis, the coefficient

matrices in the governing equations can be obtained directly from the body connec-

tion array L(k) (see Tables 1. and 2.).

The use of "relative" coordinates, that is, angular velocity components of

the bodies with respect to their adjoining bodies, as opposed to "absolute" coor-

dinates, (for example, angular velocity components in inertial space) also con-

tributes to the computational advantage. In applications with specific geometrical

configurations (1, 31, 32, 34-36, 50, 77, 152-155], it is seen that the geometry is

more easily described in terms of relative coordinates.

The generalization to allow translation between the bodies of the system makes

the analysis applicable to a much broader class of problems than was possible with

those previous analyses which are restricted to linked multi-body systems. For

example, with the head-neck systems of References [152, 154, 155] the use of trans-

lation variables between the vertebrae is necessary to obtain satisfactory models

of such systems. But, and of perhaps greater significance, the generalization to

include translation between the bodies of the system is necessary for an efficient

44



analysis of the flexibility and compliance effects as discussed earlier.

In this regard, the compliance can be modelled with a quasi-static approach

whereas the oscillations and impact response require a dynamic analysis with the

introduction of additional degrees of freedom. In both of these cases the analy-

sis outlined herein (using Lagrange's form of d'Alembert's principle together with

the use of generalized speeds) accomodates the effects of flexibility in an extrem-

ly efficient manner. That is, the forces and moments transmitted across the system

joints are directly determined and incorporated into the governing equations.

Moreover, the modelling may be made as detailed as necessary by introducing non-

linearities through the elastic springs and dampers and by increasing the number

of joints and bodies of the system.

Finally, the entire analysis outlined herein is developed with the intent of

obtaining efficiencies in a computer oriented development of the governing dynami-

cal equations. As such, its most productive application will be with large multi-

body systems such as finite-segment models of the human body, chains, cables,

robots, manipulators, and teleoperators.

4
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